33 resultados para VASCULAR SMOOTH-MUSCLE

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the small GTP-binding protein Rho in the process of smooth muscle cell (SMC) phenotypic modulation was investigated using cultured rabbit aortic SMCs. Both Rho transcription and Rho protein expression were high for the first 3 days of culture (contractile state cells), with expression decreasing after change to the synthetic state and peaking upon return to the contractile phenotype. Activation of Rho (indicated by translocation to the membrane) also peaked upon return to the contractile state and was low in synthetic state SMCs. Transient transfection of synthetic state rabbit SMCs with constitutively active Rho (val14rho) caused a dramatic decrease in cell size and reorganization of cytoskeletal proteins to resemble those of the contractile phenotype; alpha-actin and myosin adopted a tightly packed, highly organized arrangement, whereas vimentin localized to the immediate perinuclear region and focal adhesions were enlarged. Conversely, specific inhibition of endogenous Rho, by expression of C3 transferase, resulted in the complete loss of actin and myosin filaments without affecting the distribution of vimentin. Focal adhesions were reduced in number. Thus, Rho plays a key role in regulating SMC phenotypic expression.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) phenotypic modulation from the mature ’contractile’ to a less differentiated ’synthetic’ phenotype involves not only altered expression but also a reorganisation of contractile and cytoskeletal proteins. Objective: To investigate the role of RhoA, a known regulator of the actin cytoskeleton, in SMC phenotypic regulation. Methods: Rho transcription (RT-PCR), expression (Western analysis) and activation (membrane translocation or Rho ’pull-down’ assay) was investigated in cultured rabbit aortic SMC during phenotypic modulation, and under the influence of known SM-regulatory proteins (thrombin, heparin and TGF- β). Rho’s effect on cell morphology was examined by transient transfection of ’synthetic’ state SMC with either constitutively active Rho (Val14RhoA) or its inhibitor, C3 transferase. Results: RhoA transcription was elevated in the first 3 days of primary culture, and protein expression peaked at 2 days post-confluence when SMC return to a more ’contractile’ state. However, RhoA showed augmented activation at three time-points in primary culture: the transition point when SMCs enter logarithmic growth and are highly motile, upon reaching quiescence, and when they return to a more ’contractile’ state. Thrombin, heparin and TGF-β activated RhoA in ’synthetic’ state SMCs. Transfection with Val14RhoA caused a dramatic decrease in SMC size and a reorganization of cytoskeletal proteins, reminiscent of the ’contractile’ phenotype. Specific inhibition of endogenous Rho by C3 transferase resulted in an almost complete loss of contractile proteins. Conclusion: These data indicate that Rho is an important determining factor of SMC functional state.